Рубрика:
Наука и технологии /
Раздел для научных публикаций
|
Facebook
Мой мир
Вконтакте
Одноклассники
Google+
|
Широкова Е.В., к.ф.-м.н., ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», patrol8@yandex.ru
Ильичев В.Ю., к.т.н., ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
Тихонов Н.А., ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
Джанаев К.С., ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
Павлов И.В., ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
Оценка эффективности применения Random Forest, Gradient Boosting и XGBoost для бинарной классификации изображений
Производится сравнительный анализ применения трёх алгоритмов машинного обучения для решения задач бинарной классификации изображений. Полученные результаты демонстрируют адаптацию методов к различным данным, позволяя выявить их преимущества и недостатки.
Введение
Задача бинарной классификации состоит в отнесении исследуемых объектов к одному из двух классов. Она востребована, например, при распознавании объектов на изображениях, анализе рентгеновских снимков, обнаружении аномалий в кристаллической структуре металлов [1].
В настоящее время для решения этой задачи привлекают использование глубокого обучения на основе искусственных нейронных сетей, но их применение требует значительных вычислительных ресурсов [2], что, однако, не является гарантией достижения высокой точности классификации. Этот факт стимулирует разработку методов с оптимальным соотношением достигаемой точности и вычислительных затрат. В данном контексте ансамблевые (комбинированные) методы машинного обучения, такие как Random Forest, Gradient Boosting и XGBoost, остаются популярными благодаря их эффективности и гибкости [3].
Алгоритм Random Forest (метод случайного леса) объединяет результаты независимо обученных решающих деревьев [4], каждое из которых само по себе даёт относительно невысокое качество классификации, но за счёт их большого количества качество результата существенно повышается.
<...>
Ключевые слова: бинарная классификация, машинное обучение, Random Forest, Gradient Boosting, XGBoost
Полную версию статьи читайте в журнале Подпишитесь на журнал
Facebook
Мой мир
Вконтакте
Одноклассники
Google+
|