Оптимизация моделей глубокого обучения на основе GPU::
www.samag.ru
     
Поиск   
              
 www.samag.ru    Web  0 товаров , сумма 0 руб.
E-mail
Пароль  
 Запомнить меня
Регистрация | Забыли пароль?
Журнал "Системный администратор"
Журнал «БИТ»
Наука и технологии
Подписка
Где купить
Авторам
Рекламодателям
Архив номеров
Контакты
   

  Опросы

1001 и 1 книга  
19.03.2018г.
Просмотров: 9417
Комментарии: 0
Потоковая обработка данных

 Читать далее...

19.03.2018г.
Просмотров: 7616
Комментарии: 0
Релевантный поиск с использованием Elasticsearch и Solr

 Читать далее...

19.03.2018г.
Просмотров: 7714
Комментарии: 0
Конкурентное программирование на SCALA

 Читать далее...

19.03.2018г.
Просмотров: 4933
Комментарии: 0
Машинное обучение с использованием библиотеки Н2О

 Читать далее...

12.03.2018г.
Просмотров: 5613
Комментарии: 0
Особенности киберпреступлений в России: инструменты нападения и защита информации

 Читать далее...

Друзья сайта  

 Оптимизация моделей глубокого обучения на основе GPU

Архив номеров / 2020 / Выпуск №12 (217) / Оптимизация моделей глубокого обучения на основе GPU

Рубрика: Наука и технологии /  Раздел для научных публикаций

Петрин Д.А.,
магистр кафедры «Программное обеспечение ЭВМ, информационные технологии», Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Калуга, dapetrin98@yandex.ru

Белов Ю.С.,
кандидат физико-математических наук, доцент кафедры «Программное обеспечение ЭВМ, информационные технологии», Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Калуга, iu4-kf@mail.rux

Козина А.В.,
аспирант кафедры «Программное обеспечение ЭВМ, информационные технологии», Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Калуга, anastasiya_kozin@list.ru

 

Оптимизация
моделей глубокого обучения на основе GPU

В данной статье рассматриваются оптимизации логического вывода обученных моделей на GPU, а также сравнительные характеристики производительности без и с использованием TensorRT

 

Введение

В наши дни ускорение моделей глубокого обучения похоже на погоню за движущейся целью [1]. По мере того как модели становятся все более универсальными и точными, их требования к вычислительным ресурсам и памяти стремительно растут [2, 3] и, вполне возможно, опередят улучшения в ресурсах и производительности графических процессоров. Так, например, 100 эпох обучения ResNet50 на наборе данных ImageNet на одном графическом процессоре NVIDIA Tesla M40 занимают 14 дней. Чтобы сократить время обучения, исследователи используют кластеры с сотнями подобных графических процессоров [4, 5]. Точно так же во время логического вывода (inference) серьезной проблемой является достижение целевых значений задержки (особенно для приложений, работающих в реальном времени) при высокой степени повторного использования, пропускной способности и точности.

<...>


Полную версию статьи читайте в журнале
Подпишитесь на журнал
Купите в Интернет-магазине

Комментарии отсутствуют

Добавить комментарий

Комментарии могут оставлять только зарегистрированные пользователи

               Copyright © Системный администратор

Яндекс.Метрика
Tel.: (499) 277-12-41
Fax: (499) 277-12-45
E-mail: sa@samag.ru