Оценивание успеваемости в адаптивной обучающей среде::Журнал СА 01-02.2019
www.samag.ru
     
Поиск   
              
 www.samag.ru    Web  0 товаров , сумма 0 руб.
E-mail
Пароль  
 Запомнить меня
Регистрация | Забыли пароль?
О журнале
Журнал «БИТ»
Информация для ВАК
Звезды «СА»
Подписка
Где купить
Авторам
Рекламодателям
Магазин
Архив номеров
Вакансии
Игры
Контакты
   

  Опросы

Какие курсы вы бы выбрали для себя?  

Очные
Онлайновые
Платные
Бесплатные
Я и так все знаю

 Читать далее...

1001 и 1 книга  
27.03.2019г.
Просмотров: 549
Комментарии: 0
Arduino Uno и Raspberry Pi 3: от схемотехники к интернету вещей

 Читать далее...

27.03.2019г.
Просмотров: 455
Комментарии: 0
Автоматизация программируемых сетей

 Читать далее...

27.03.2019г.
Просмотров: 482
Комментарии: 0
Изучаем pandas. Второе издание

 Читать далее...

27.03.2019г.
Просмотров: 410
Комментарии: 0
Компьютерное зрение. Теория и алгоритмы

 Читать далее...

13.03.2019г.
Просмотров: 611
Комментарии: 0
DevOps для ИТ-менеджеров

 Читать далее...

Друзья сайта  

Форум системных администраторов  

sysadmins.ru

 Оценивание успеваемости в адаптивной обучающей среде

Архив номеров / 2019 / Выпуск №01-02 (194-195) / Оценивание успеваемости в адаптивной обучающей среде

Рубрика: Наука и технологии

Без фото ФРОЛОВ А.В., ФГБОУ ВО «МГУ им. адм. Г.И. Невельского», Владивосток, начальник компьютерного класса № 1 кафедры автоматических и информационных систем, факультет электроники и информационных технологий, Владивосток, Frolov@msun.ru

Без фото ФРОЛОВА Е.С., ФГБОУ ВО «МГУ им. адм. Г.И. Невельского», Владивосток, аспирант кафедры автоматических и информационных систем, факультет электроники и информационных технологий, Владивосток, odinochka_ja@bk.ru

Оценивание успеваемости
в адаптивной обучающей среде

Инфраструктура современной образовательной среды является адаптивной. Необходимы системы оценивания, соответствующие требованиям адекватности, безопасности, технологичности, интерактивности, массовости, стандартизации, адаптивности и др. В статье рассматривается задача оценивания учебных достижений обучаемых, формирования их рейтинга при адаптивном обучении, тестировании. Предложена модель оценивания, составления рейтингового списка на основе квалиметрического метода учета достижений каждого студента и статистико-математической их оценки

Введение

В современном образовательном процессе вуза осуществляется переход к компьютерным системам обучения и контроля, самообучению. Это стимулирует и активно продвигаемый сейчас компетентностный подход к обучению [1, с. 48]. Вузам следует применять гибкие учебные программы, согласованные с требованиями ФГОС, настраиваемыми («масштабируемыми») адаптивными методами познания.

Лишь такой специалист сможет конкурировать на динамичном рынке труда, у которого сформировано собственное правильное профессиональное мировоззрение. Именно поэтому инфраструктура образовательной среды должна давать возможность индивидуального, творческого отклика на складывающуюся ситуацию. Таким образом, необходимы подходы, методики, регуляторы оценки, направленные на формирование профессионально грамотного персонала с таким мировоззрением [2, с. 10].

В работе рассмотрена подобная задача оценивания, на основе решения которой можно формировать рейтинговые списки обучаемых.

Постановка задачи

Современному динамичному процессу обучения статический контроль уже недостаточен, необходим управляемый, динамичный адаптивный контроль.

Осуществляется адаптивное тестирование, которое приспосабливается к учебным достижениям каждого обучаемого, его текущим знаниям. Если конкретный модуль (тест) не осилен – предлагается более легкий тест, если все осилены, то предлагается более сложный.

Регулируются уровень сложности предъявляемого контента, тестов (комплектов тестов), а перевод на следующий продуктивный уровень осуществляется по результатам успешности обучения на предыдущем этапе, причем возможны случаи:

  1. сначала выдается задание среднего уровня и осуществляется переход к уровню ниже или выше, в зависимости от успешности выполнения задания;
  2. сначала выдается задание нормативно-критериального уровня (т.е. по требованиям ФГОС, учебных программ), и далее переход к заданию сложности выше (ниже);
  3. сначала выдается задание низшего уровня, и далее переход к заданию более высокого уровня.

Адаптивное тестирование обеспечивает объективность оценок компетенций обучающегося, исключая регулярную помощь обучающего на каждом этапе, сводящего его функции к функциям тьютора.

Если, например, B – множество задач в задании, A – количество правильных ответов, то для оценки C уровня подготовки студента можно использовать в простейшем случае:

При этом отождествляя:

  • менее 60% с оценкой «неудовлетворительно»,
  • 61-80% – «удовлетворительно»,
  • 81-94% – «хорошо»,
  • 95-100% – «отлично».

Эта шкала – простая, но изменяемая. Есть более «развернутые» шкалы, например [3, c. 34], десятибалльная (0-10 баллов, 0 баллов – «полная неподготовленность», 10 баллов – «очень высокий уровень подготовленности»).

В компьютерной среде, если обучаемый не справится с заданием (тестом) за отведенный квант времени, автоматически выдача вопросов (тестовых заданий) прекращается, результат идентифицируется по правильно выполненным заданиям (см. рис. 1).

Рисунок 1. Схема адаптивного тестирования (https://novainfo.ru/article/16038)

Рисунок 1. Схема адаптивного тестирования (https://novainfo.ru/article/16038)

Валидность, надежность тестов оценивается часто гипотезой нормального или логнормального распределения тестовых результатов. Трудность тестовых комплектов оценивается индексом выполнимости:

где:

  • n – сколько испытуемых прошло тестирование успешно,
  • N – сколько всего было протестировано.

Модель оценивания

Пусть требуется составить рейтинговый список обучающихся по n дисциплинам:

  • с учетом важности предметов αii=1,2,...,n;
  • оценок bij учащегося j=1,2,...,mbij[0;Bi], Bi – максимальный балл студента по i-му предмету;
  • βij – шкалированная оценка по некоторой шкале:

Успеваемость k-го обучаемого (из K обучаемых) по i-й дисциплине определим зависимостью, аналогичной [4, с. 122]:

где:

  • di – успеваемость по i-й дисциплине,
  • rijl – рейтинговая оценка,
  • N – нормирующая величина, зависящая от общего количества оценок, полученных обучающимися по i-му предмету.

В общем случае удельная ([0;1]) оценка:

Можно вместо усреднения использовать средневесовое взвешивание, используя весовые коэффициенты γi (значимости i-го предмета):

Для каждого испытуемого определяются индивидуальные (адаптивные) стратегии, кривые испытуемых, обученности, объективности тестов и оценок.

Например, реализуя квалиметрический подход к оцениванию достижений студента [5, c. 10].

Заключение

В условиях наступающей цифровой экономики, необходимости соответствующих компетенций актуализируются проблема объективности, задачи количественной оценки тестирования компетенций.

Предложенный в статье подход и математическая модель оценивания учебных достижений обучаемых, формирования их рейтинга при адаптивном обучении, тестировании помогут повысить объективность оценивания в адаптивных (компьютерных) средах обучения.

  1. Корчагин Е.А., Сафин Р.С. Компетентностный подход и традиционное представление о высшем образовании. // «Высшее образование в России», № 11, 2016 г. – С.47-54.
  2. Khnyfr H. The higher education system in the world with strategy // Journal of Cultural Management, № 3, 2005, pр.10-16.
  3. Казиев В.М., Казиева Б.В. Тестирование в современном высшем образовании. – М.: НОУ «ИНТУИТ». – 2015. – 137 с.
  4. Нестеров В.Л., Радченко В.И., Салтынская Г.К. Оценка успеваемости учащихся и информационные технологии. // «Информатика и образование», , № 11, 2005 г. – С.121-123.
  5. Дубцова М.М. О реализации квалиметрического подхода в решении проблемы оценивания учебных достижений студентов вуза. // «Перспективы науки», –2014, № 5, 2014 г. – С. 9-11.

Ключевые слова: контроль, адаптивность, обучение, тестирование, обучаемый, образование.


Estimation of progress in the adaptive educational environment

Frolov A.V., FSBEI of HE "MSU. adm. G.I. Nevelskogo”, Vladivostok, Head of Computer Class No. 1, Department of Automatic and Information Systems, Faculty of Electronics and Information Technologies, Vladivostok, Frolov@msun.ru

Frolova E.S., FSBEI of HE "MSU. adm. G.I. Nevelskogo”, Vladivostok, Postgraduate Student, Departments of Automatic and Information Systems, Faculty of Electronics and Information Technologies, Vladivostok, odinochka_ja@bk.ru

Abstract: Infrastructure of the modern educational environment is adaptive. The corresponding systems of estimation conforming to requirements of adequacy, safety, technological effectiveness, interactivity, mass character, standardization, adaptability, etc. are necessary. In article the problem of estimation of educational achievements of trainees, formations of their rating at adaptive training, testing is considered. The model of estimation, drawing up the rating list is offered

Keywords: control, adaptability, training, testing, trainee, education.


Комментарии отсутствуют

Добавить комментарий

Комментарии могут оставлять только зарегистрированные пользователи

               Copyright © Системный администратор

Яндекс.Метрика
Tel.: (499) 277-12-41
Fax: (499) 277-12-45
E-mail: sa@samag.ru